

Carbonate chemistry on D366

Toby Tyrrell

D366 Carbon

Bioassays

Carbon Manipulation Methods

Acid/base additions: widely used, becoming less popular last few years. pH can be adjusted to correct values but no change in DIC.

CO2 bubbling: quite widely used. Realistic change to carbonate chemistry but physical disruption/disturbance to cells.

Acid & bicarbonate addition: becoming more widely used. Realistic and lack of physical disturbance.

Bioassay D366 results – Carbonate chemistry – all experiments (Dumousseau)

-Ambient

⊢550 ppm

Time (hours)

30% pCO2 discrepancies?

(Hoppe et al, 2012, Biogeosciences Discuss., 9, 1781–1792)

First UK Ocean Acidification Cruise

June-July 2011

PSO: Eric Achterberg

70 CTD stations (1500 Niskins)

320 UW sampling points

1000 FC sampling points

5 bioassay experiments (350 bottles)

2 tonnes seawater filtered

D366 surface water pH

preliminary, subject to revision