SD4

Improved understanding of the potential population, community and ecosystem impacts for all life stages for commercially important species and their capacity to resist and adapt

Kevin J Flynn et al.

The Team

- Swansea: finfish & decapods; mechanistic physiological models
- Exeter: bivalves
- Strathclyde: fisheries modelling
- PML: socio-economic modelling

The individuals ...

- Swansea: <u>Kevin J Flynn</u>, Robin Shields, Purazen Chingombe, Ingrid Lupatsch, Alex Keay, Jake Scolding, Maria Scolamacchia; Ed Pope, Gemma Webb
- Exeter: Rod Wilson, Ceri Lewis, Rob Ellis, Rebecca Hunter
- Strathclyde: Dougle Speirs
- PML: <u>Caroline Hattam</u>, **Nicola Beaumont**, Gorka Merino, Mel Austen

- (short-form) aims of SD4 are for
 Aim 4.1 Examine physiological area responses of commercial subject area
 Aim 4.2 Scale up the subject of OA upon population ce of the impact of OA upon the essential subject of OA upon the production and higher trophic species and upon the production and especial fish and shellfish stocks.
 - 4.4 Investigate possible socio-economic consequences of OA at an ecosystem level.

Experimental - organisms

- Pecten maximus (scallop)
- Crassostrea gigas (Pacific oyster)
- Nephrops norvegicus (langoustine, scampi)
- Clupea harengus (herring)
- Melanogrammus aeglefinus (haddock)
- Dicentrarchus labrax (European sea bass)
- diatom, prymnesiophyte, cryptophyte
- copepods

Experimental - conditions

- Matrix of 2 OA + 2 temperatures
- OA equivalent to extant <u>&</u> 750ppm CO₂
- Temperature upper range of extant (90-95% limit for species under study) & that value + 4°C (or +2°C)
 - i.e. not a single fixed temp, but varies with season

What we are aiming for

Timetable

- Start date delay affected project run-out
- Series of experimental challenges
 (esp. lack of good quality field-sourced organisms)
- Loss of original Swansea PDRA to a commercial company
- Rescheduling of all bivalve work to Exeter, allowing Swansea to concentrate on others
- Integration with FP7 Nephrops project (will provide further scope for OA experiments at Swansea)
- Socio-economics on track
- Fisheries model on track to start soon

Project Timetable

		20	11			20	2012			20	13			20	2015			
	Q1	Q2	Q3	Q4	Q1	22	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2
Swansea Exp																		
Swansea Mod																		
Exeter Exp																		
Strathclyde Mod																		
PML SocioEco Mod																		
FP7 Nephrops																		

Presentations

- Status at Swansea: finfish and decapods
- Status at Exeter: bivalves
- Status at PML: socio-economics

 Status at Strathclyde: not started, PDRA to commence soon "Historic" pCO₂ 280 ppm bulk water pH 8.165

"Extant" pCO2 390 bulk water pH 8.03

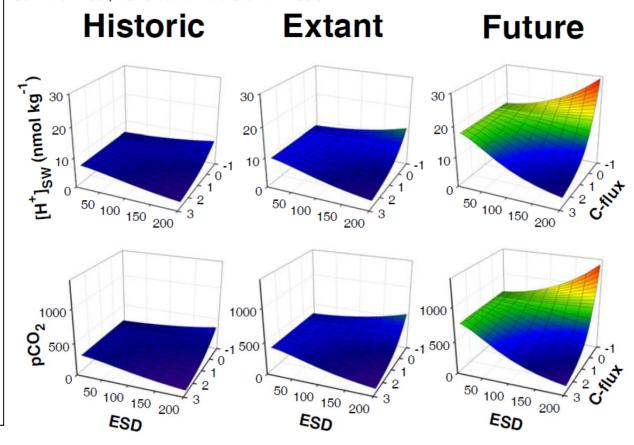
"Future" pCO₂ 750 bulk water pH 7.76

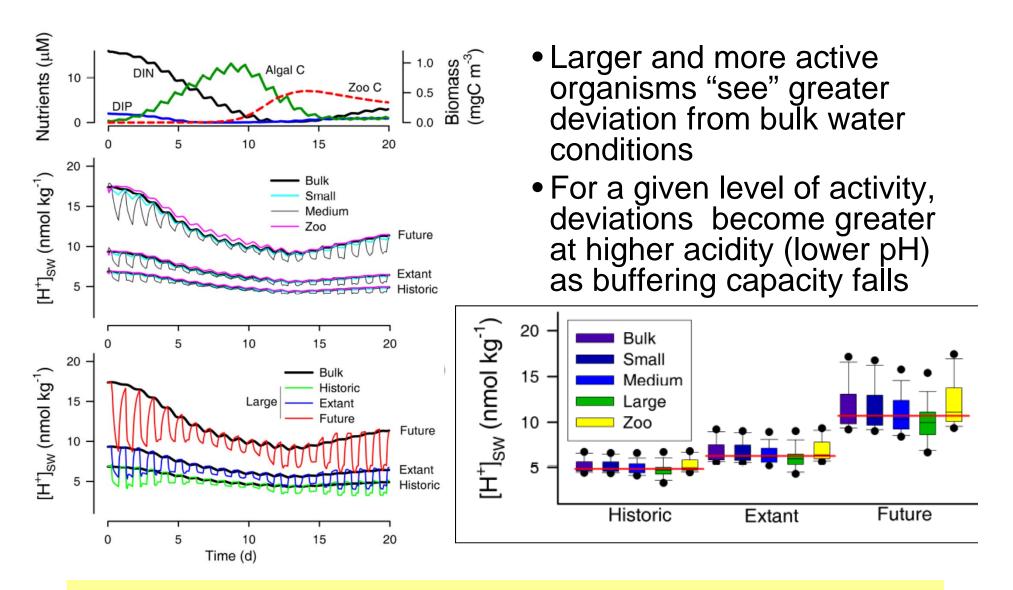
ESD: diameter µm of the particle or aggregate

Cflux: +ve is C-fix

C-fix "compensates" OA

Respiration "exaggerates" OA


nature climate change


LETTERS

PUBLISHED ONLINE: XX MONTH XXXX | DOI: 10.1038/NCLIMATE1489

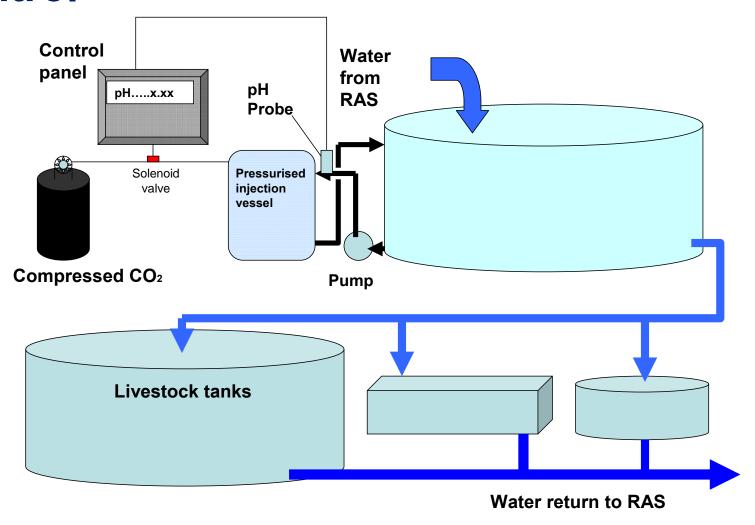
Changes in pH at the exterior surface of plankton with ocean acidification

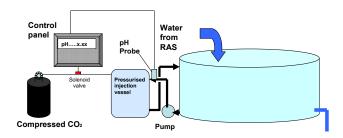
Kevin J. Flynn^{1*}, Jerry C. Blackford², Mark E. Baird³, John A. Raven⁴, Darren R. Clark², John Beardall⁵, Colin Brownlee⁶, Heiner Fabian¹ and Glen L. Wheeler^{2,6}

Displaying data on pH scales, and especially as ∆pH, is misleading because of log scaling

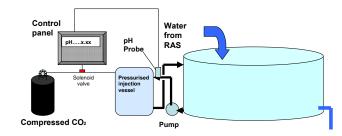
Swansea: finfish & decapods

SD4 – Finfish and Decapods

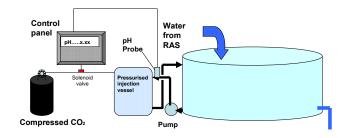

Ed Pope (e.c.pope@swansea.ac.uk)



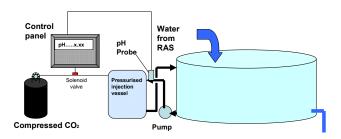
pH / CO₂ control system with temperature control


4 separate systems

System 1


Future pH / CO₂ (750ppm) Elevated temperature (ambient +2°C)

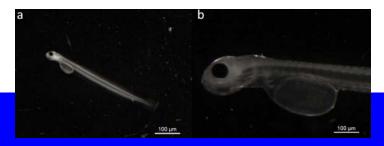
System 2


Future pH / CO₂ (750 ppm) Extant temperature (ambient)

System 3

Extant pH / CO₂ (380ppm) Extant temperature

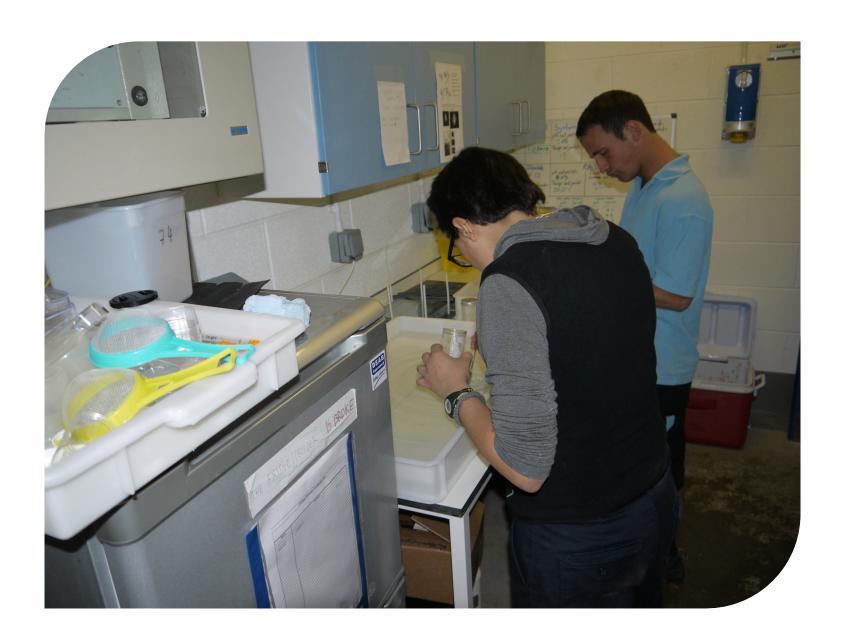
System 4


Extant pH / CO₂ (380ppm) Elevated temperature (ambient +2°C)

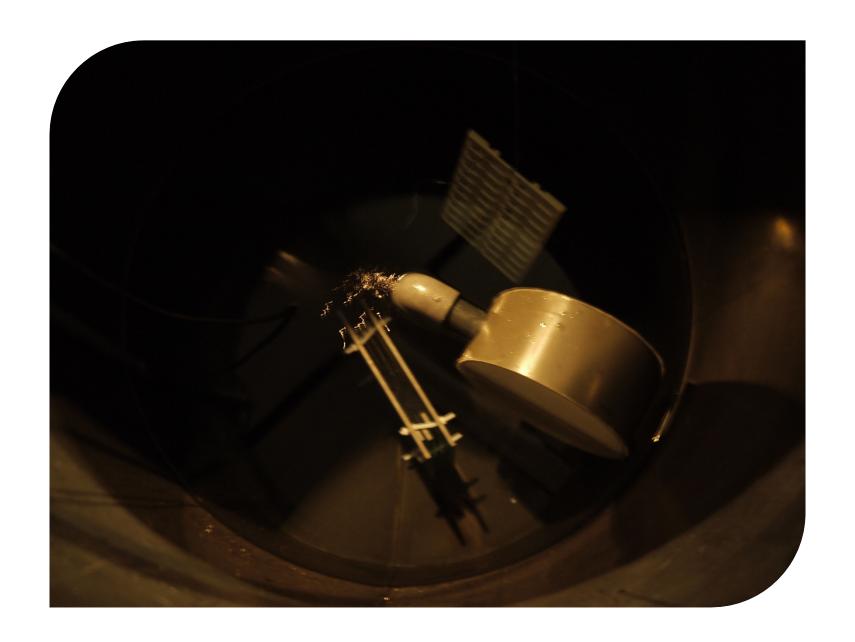
	C	Q1 2012		Q2 2012			Q3 2012			Q4 2012			Q1 2013			C	22 20:	13	
	J	F	М	Α	М	J	J	Α	S	0	N	D	J	F	М	Α	М	J	
Swansea PDRA (50%)																			
Swansea techician team (2 technicians)																			
Fish #1 Herring																			
Fish #2 Haddock																			
Fish #3 Sea bass																			
Decapod #1 Nephrops																			
Exeter component																			
Strathclyde component																			Jan 201
PML component																			Dec 201
NEPHROPS FP7																			Feb 201
WP4 - development of Nephrops																			
hatchery techniques																			

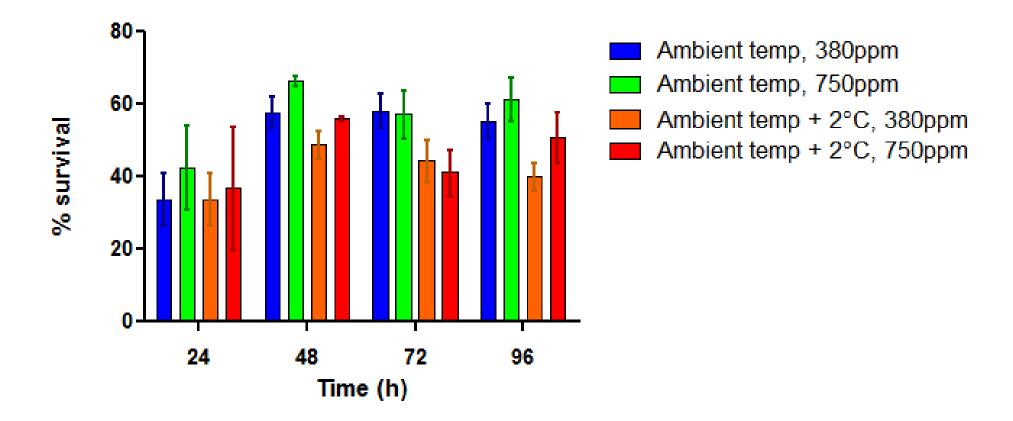
Key parameters

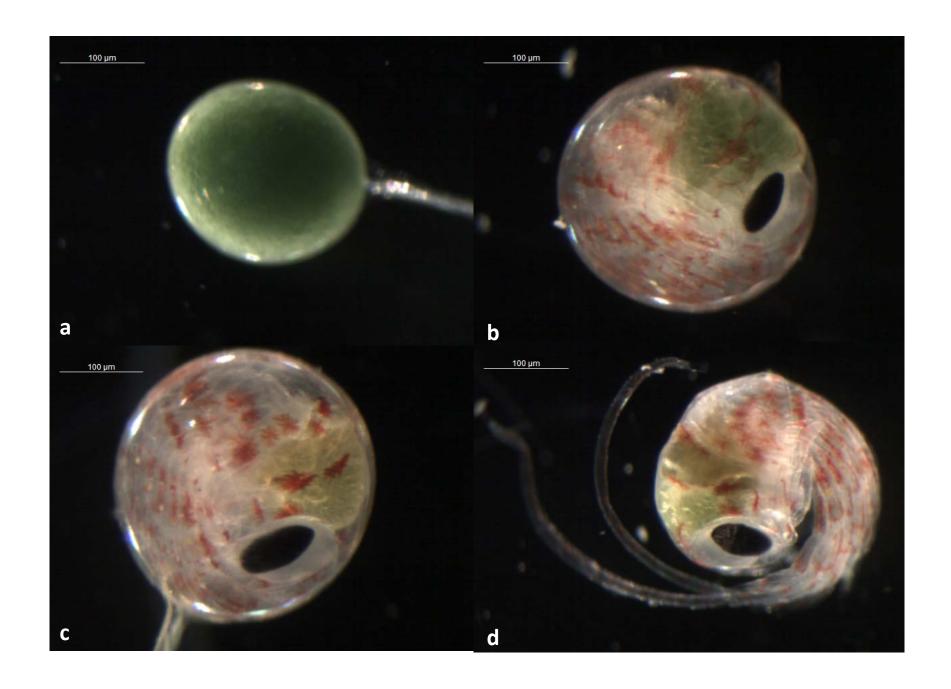
- Embryonic development
- Survival (to hatch; larvae to post-larvae)
- Growth
- Hatching rate
- First feeding success
- Feed intake
- Metabolic rate
- Calcification


Herring (*Clupea harengus*); preliminary experiment 2011

No significant differences were observed in the relationship between body length or yolk sac area with regard to pH treatments after 11 d PF (8 d post-hatch).


Fish 1: Herring (Clupea harengus)


- Locally caught mature adults available February April
- First fish were caught on Friday
- Two priorities:
 - Survival of eggs, hatch rate, growth
 - Production of sufficient larvae for feeding, energetics
- Gonads brought to CSAR and fertilised within hours
- Eggs adhered to glass plates and suspended in OA tanks for incubation (3 x 150L tanks per treatment)
 - Microscope slides for egg survival (ca. 100 eggs per slide)
 - Glass plates (thousands per plate)
- Future fish will be used for fertilisation experiments (fertilisation rates under OA conditions)



Fish species #2 and #3

- Haddock problems with obtaining sufficient numbers of eggs. We will keep trying
- Sea Bass farmed, egg availability is nonseasonal
 - BUT temperature of the system will need to be higher, incompatible with the other species (herring, *Nephrops*)
- Further work with autumn spawning stocks of herring - these fish will require a warmer system temperature, compatible with simultaneous sea bass work
- Alternative species?

Nephrops norvegicus

- We have berried females producing larvae (currently not under OA conditions)
- Regular production of low (<100 d⁻¹) numbers of larvae, which go into 4 treatments
- Currently running larval survival trials (up to stage IV, ca. 1 month)
- Later work in Orkney cells
 (feeding, moulting, growth, calcification)
- NEPHROPS FP7 project near-continuous supply of Nephrops larvae for future work

	С	(1 201	L2	Q2 2012			Q3 2012			Q4 2012			Q1 2013			Q2 2013			
	J	F	М	Α	М	J	J	Α	S	0	N	D	J	F	М	Α	М	J	
Swansea PDRA (50%)																			
Swansea techician team (2 technicians)																			
Fish #1 Herring																			
Fish #2 Haddock																			
Fish #3 Sea bass																			
Decapod #1 Nephrops																			
Exeter component																			
Strathclyde component																			Jan 2015
PML component																			Dec 2013
NEPHROPS FP7																			Feb 2015
WP4 - development of Nephrops																			
hatchery techniques																			

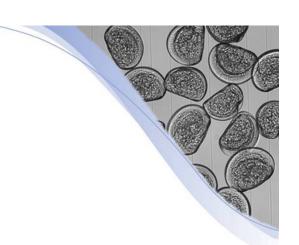
Exeter: bivalves

Experimental studies at Exeter

Robert Ellis
University of Exeter

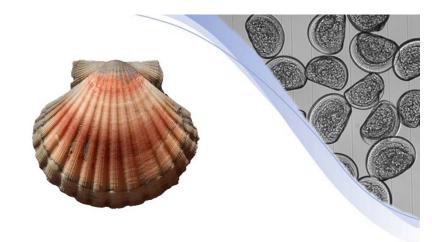
UKOARP Annual Science meeting, Exeter, 18th April 2012

Study species at Exeter


Crassostrea gigas - Pacific oyster

- 2008 oysters contributed >31% of global mollusc production, worth
 4.17 billion US\$ (FAO 2010)
- Introduced for aquaculture from Japan to Europe in 1970's
- Invasive populations established around UK coastline

Available year round


Study species at Exeter

Crassostrea gigas - Pacific oyster

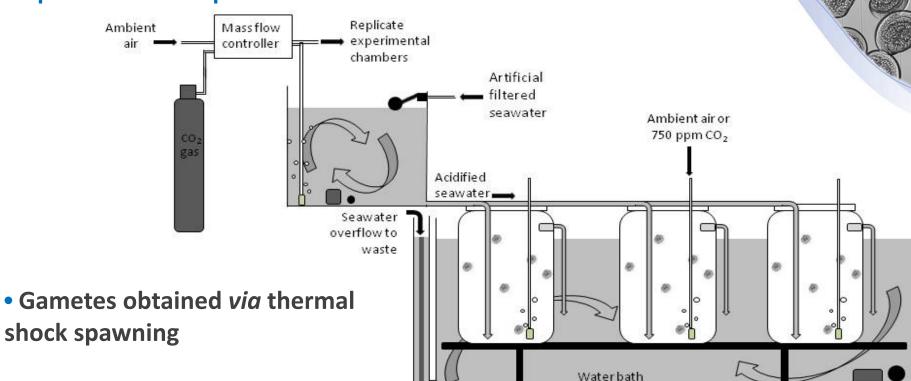
- 2008 oysters contributed >31% of global mollusc production, worth
 4.17 billion US\$ (FAO 2010)
- Introduced for aquaculture from Japan to Europe in 1970's
- Invasive populations established around UK coastline

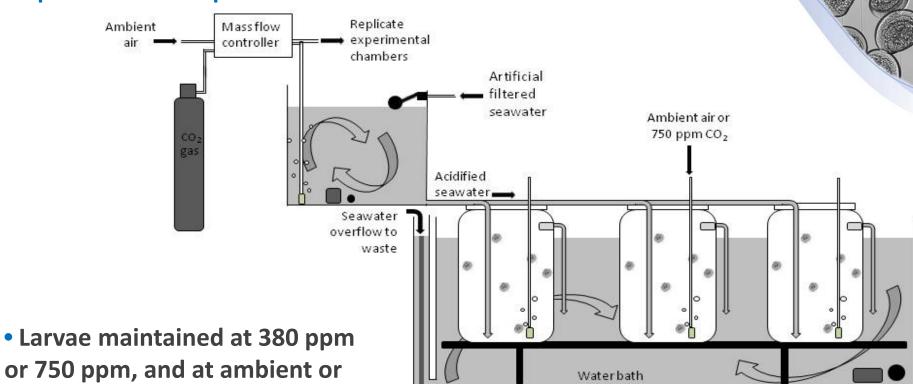
Available year round


Pecten maximus – King scallop

- 2010, value of 1st sale landings of scallops £54.5million in UK (DEFRA 2011)
- Native to UK, wide distribution around UK coast
- Available May-September, hand collected

Aquatic research centre


- £9million research facility, costing opened late 2011, designed to investigate impact of various stressors on aquatic ecosystems
- Computer controlled water treatment, removes all potential contaminants and produce high quality water
- Runs at any salinity from ion poor fresh water to fully marine, and at any temperature between 10 °C and 28 °C (± 1 °C)

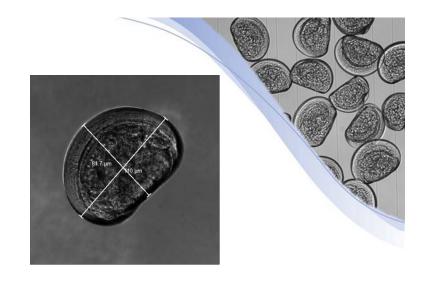

Experimental setup

• Fertilized embryos distributed in experimental chambers (N=16)

Experimental setup

settlement

+4 °C, from fertilisation until

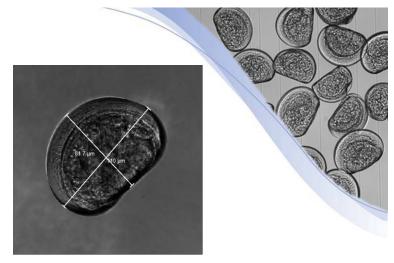

Parameters measured

 Survival, developmental staging and growth rate

Larvae sampled and fixed 1h, 2h, 4h, 6h, 8h, 10h, 12h, 18h, 24h, 36h and 48h into development

Subsequently sampled every 24h until settlement

Measure survival, abnormalities and morphology

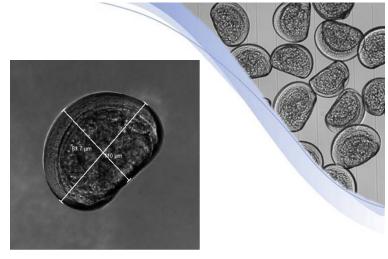


Parameters measured

 Respiration, excretion and feeding rate

Oxygen consumption and ammonium excretion will be measured 4 d after fertilisation, and every 4 days until settlement

Feeding rate, measured as clearance efficiency over 24, measured every 4 days, from 4 d post fertilisation until settlement

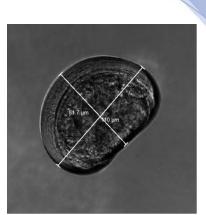


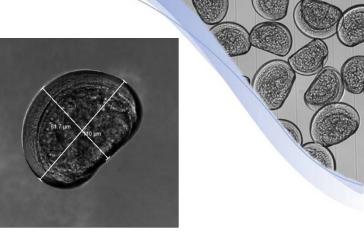
Parameters measured

Calcification

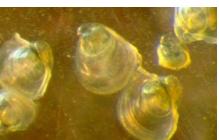
Calcium carbonate deposition, through incorporation of calcein in larval shell, using confocal microscopy

Measured over 48h, every 4 days from 4 d post fertilisation until settlement




Parameters measured

Settlement


Settlement assessed from 19 days post fertilisation, settlement panel introduced into each experimental chamber

Panel assessed daily, measure number of individuals settled and collect spat for morphology/physiology

T. Renault (2011) Ifremer

Proposed timetable

										20	12							
	Ap	ril	М	May		June		ıly	August		September		October		November		Dec	ember
Finalise experimental Set up				,				,			·							
Oyster availability																		
Scallop availability																		
1st Oyster Trail																		
1st Scallop Trail																		
2nd Scallop Trail																		
2nd Oyster Trail																		
Work up outstanding morphological data																		
Work up outstanding confocal microscopy																		

PML: socio-economics