

Marine Matters

# Assessing the impact of OA on climate: DMS and DMSP

UK Ocean Acidification Research Programme

H4c: OA will lead to a reduced flux of DMS from the oceans to the atmosphere

<u>Frances Hopkins</u> **Stephen Archer, Phil Nightingale, John Stephens** 



# Assessing the impact of OA on climate:

## **DMS and DMSP**

- •Why DMS(P)?
- Previous studies
- D366 NW European shelf waters: response to OA





#### DMSP and DMS: production and fate



Phytoplankton physiology



- 1. Osmolyte/compatible solute
- 2. Defense: anti-microbial, anti-viral, anti-grazing
- 3. Metabolic overflow mechanism
- 4. Anti-oxidant



#### DMSP and DMS: production and fate



#### Earth system science



Interactions between ocean and atmosphere:
Major regulators of atmospheric composition and climate

#### DMS, CCN, Albedo



DMS: Most significant biological source of gaseous S to remote marine troposphere

# <u>Climate sensitivity</u> to marine DMS emissions

- Strongly debated,
   possibly small? See
   Quinn & Bates 2011,
   Nature, for recent
   review.
- Unlikely that DMS
   accounts for bulk of CCN
   number concentrations
   in remote MBL sources
   of CCN more complex...

From: Quinn and Bates, 2011

#### OA studies and DMS/DMSP

|     | STUDY                                                      | RESULTS    | comments                                                                                           |
|-----|------------------------------------------------------------|------------|----------------------------------------------------------------------------------------------------|
| DMS | Avgoustidi et al. submitted<br>Bergen <b>mesocosm</b> 2003 | <b>V</b>   | Decrease under high CO <sub>2</sub>                                                                |
|     | Hopkins et al. 2010<br>Bergen <b>mesocosm</b> 2006         | <b>V</b>   | Decrease under high CO <sub>2</sub>                                                                |
|     | Vogt et al. 2008<br>Bergen <b>mesocosm</b> 2005            | <b>↔</b>   | Little difference between ambient and high CO <sub>2</sub> Impact on dynamics?                     |
|     | Archer et al. in prep<br>Svalbard <b>mesocosm</b> 2010     | <b>↓</b> ↑ | Decrease under high CO <sub>2</sub> during bloom<br>Increase under high CO <sub>2</sub> post-bloom |



## RRS Discovery D366: June – July 2011 Round Britain Cruise



# Bioassays

- $\triangleright$  E01 E05: 4 x CO<sub>2</sub>, 3 time points, 96 hours
- $\geq$  E06: 3 x CO<sub>2</sub>, high resolution sampling, 96 hours



#### D366 June – July 2011 Round Britain Cruise

## DMS(P) studies

#### How will OA in NW European shelf waters effect:

- Standing stocks of DMS and DMSP?
  - Provides limited information net products of various and varying processes
- DMSP synthesis rates? (incorporation of <sup>13</sup>CO<sub>2</sub>)
- DMS consumption/production? (<sup>13</sup>C-DMS loss rates)

#### Statistics...

One-way ANOVA (F = ratio of mean squares, df = degrees of freedom, p = significance of F-test) to identify significant differences between pCO<sub>2</sub> treatments

#### Effect of pCO<sub>2</sub> on cycling of DMS(P)?

#### de novo DMSP synthesis rates (μDMSP) vs pCO<sub>2</sub>

- <sup>13</sup>CO<sub>2</sub> incorporation into DMSPp in Bioassays
- Determined as Mass Ratio of <sup>13</sup>C-DMS versus total DMS (Stefels et al. 2009 L&O Methods.)
- Logarithmic growth model applied to calculate μDMSP
- DMSP production (nmol dm<sup>-3</sup> h<sup>-1</sup>) from μDMSP x [DMSPp]
- μDMSP determined at T0, T48 and T96 in all bioassays at the 3 levels of pCO<sub>2</sub>
- Samples still to be analysed on PTR-MS

Example: Two levels of pCO<sub>2</sub>: <sup>13</sup>C into DMSP:
Active uptake and good precision (9 incubations / treatment)
Should give us good DMSP production/ synthesis rates





Time (h) See Archer et al.to be submitted



#### Effect of pCO<sub>2</sub> on cycling of DMS(P)?

#### <sup>13</sup>C-DMS Loss Rates (DMS consumption and gross production)



Dark incubation (12 hours)
Samples withdrawn every 4 hours
Analysed using GC-MS
Repeated at T0, T48, T96



## E01 Mingaley Reef Stratified





## E02 Irish Sea Mixed





E03
Bay of Biscay
Stratified





## E04 S North Sea Mixed





## E05 C North Sea Stratified





E05 C North Sea Stratified

DMS consumption

380 > 750 = less DMS at 380?

DMS gross production

750 > 380 = more DMS at 750?

#### Standing stocks

DMS: 1000 > 750 > 550 > 380

DMSP: 380 > 550 > 750 > 1000



#### E06: High Resolution Sampling: Rapid response to acidification



## Effect of pCO<sub>2</sub> on DMS(P)?

#### Summary

Response of DMS(P) to OA on the NW European shelf: consistent

- DMS increases with increasing pCO<sub>2</sub>
- DMSP (total and particulate) <u>decreases</u> with increasing pCO<sub>2</sub>
- Opposite response to a number of previous mesocosm studies
- CO<sub>2</sub> DMSP DMS
- Response to acidification is rapid with sharp changes in concentration seen after 1 hour. But differences between treatment persist, and even increase, over the following 96h.
- ➤ Differences in rates of consumption/production of DMS between 380 and 750 may help to explain some of these differences in standing stocks (requires further investigation and method development)
- > pCO<sub>2</sub> effects on DMSP synthesis rates? Results pending....
- Next step? Detailed examination of response of plankton community: links to DMS(P)

## Thanks for listening

