Marine Matters # Assessing the impact of OA on climate: DMS and DMSP UK Ocean Acidification Research Programme H4c: OA will lead to a reduced flux of DMS from the oceans to the atmosphere <u>Frances Hopkins</u> **Stephen Archer, Phil Nightingale, John Stephens** # Assessing the impact of OA on climate: ## **DMS and DMSP** - •Why DMS(P)? - Previous studies - D366 NW European shelf waters: response to OA #### DMSP and DMS: production and fate Phytoplankton physiology - 1. Osmolyte/compatible solute - 2. Defense: anti-microbial, anti-viral, anti-grazing - 3. Metabolic overflow mechanism - 4. Anti-oxidant #### DMSP and DMS: production and fate #### Earth system science Interactions between ocean and atmosphere: Major regulators of atmospheric composition and climate #### DMS, CCN, Albedo DMS: Most significant biological source of gaseous S to remote marine troposphere # <u>Climate sensitivity</u> to marine DMS emissions - Strongly debated, possibly small? See Quinn & Bates 2011, Nature, for recent review. - Unlikely that DMS accounts for bulk of CCN number concentrations in remote MBL sources of CCN more complex... From: Quinn and Bates, 2011 #### OA studies and DMS/DMSP | | STUDY | RESULTS | comments | |-----|--|------------|--| | DMS | Avgoustidi et al. submitted
Bergen mesocosm 2003 | V | Decrease under high CO ₂ | | | Hopkins et al. 2010
Bergen mesocosm 2006 | V | Decrease under high CO ₂ | | | Vogt et al. 2008
Bergen mesocosm 2005 | ↔ | Little difference between ambient and high CO ₂ Impact on dynamics? | | | Archer et al. in prep
Svalbard mesocosm 2010 | ↓ ↑ | Decrease under high CO ₂ during bloom
Increase under high CO ₂ post-bloom | ## RRS Discovery D366: June – July 2011 Round Britain Cruise # Bioassays - \triangleright E01 E05: 4 x CO₂, 3 time points, 96 hours - \geq E06: 3 x CO₂, high resolution sampling, 96 hours #### D366 June – July 2011 Round Britain Cruise ## DMS(P) studies #### How will OA in NW European shelf waters effect: - Standing stocks of DMS and DMSP? - Provides limited information net products of various and varying processes - DMSP synthesis rates? (incorporation of ¹³CO₂) - DMS consumption/production? (¹³C-DMS loss rates) #### Statistics... One-way ANOVA (F = ratio of mean squares, df = degrees of freedom, p = significance of F-test) to identify significant differences between pCO₂ treatments #### Effect of pCO₂ on cycling of DMS(P)? #### de novo DMSP synthesis rates (μDMSP) vs pCO₂ - ¹³CO₂ incorporation into DMSPp in Bioassays - Determined as Mass Ratio of ¹³C-DMS versus total DMS (Stefels et al. 2009 L&O Methods.) - Logarithmic growth model applied to calculate μDMSP - DMSP production (nmol dm⁻³ h⁻¹) from μDMSP x [DMSPp] - μDMSP determined at T0, T48 and T96 in all bioassays at the 3 levels of pCO₂ - Samples still to be analysed on PTR-MS Example: Two levels of pCO₂: ¹³C into DMSP: Active uptake and good precision (9 incubations / treatment) Should give us good DMSP production/ synthesis rates Time (h) See Archer et al.to be submitted #### Effect of pCO₂ on cycling of DMS(P)? #### ¹³C-DMS Loss Rates (DMS consumption and gross production) Dark incubation (12 hours) Samples withdrawn every 4 hours Analysed using GC-MS Repeated at T0, T48, T96 ## E01 Mingaley Reef Stratified ## E02 Irish Sea Mixed E03 Bay of Biscay Stratified ## E04 S North Sea Mixed ## E05 C North Sea Stratified E05 C North Sea Stratified DMS consumption 380 > 750 = less DMS at 380? DMS gross production 750 > 380 = more DMS at 750? #### Standing stocks DMS: 1000 > 750 > 550 > 380 DMSP: 380 > 550 > 750 > 1000 #### E06: High Resolution Sampling: Rapid response to acidification ## Effect of pCO₂ on DMS(P)? #### Summary Response of DMS(P) to OA on the NW European shelf: consistent - DMS increases with increasing pCO₂ - DMSP (total and particulate) <u>decreases</u> with increasing pCO₂ - Opposite response to a number of previous mesocosm studies - CO₂ DMSP DMS - Response to acidification is rapid with sharp changes in concentration seen after 1 hour. But differences between treatment persist, and even increase, over the following 96h. - ➤ Differences in rates of consumption/production of DMS between 380 and 750 may help to explain some of these differences in standing stocks (requires further investigation and method development) - > pCO₂ effects on DMSP synthesis rates? Results pending.... - Next step? Detailed examination of response of plankton community: links to DMS(P) ## Thanks for listening